Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

IG

Giúp mk vs

Cho phương trình: (m – 1)x^2 + 2(m – 1)x – m = 0 ( ẩn x)
a) Định m để phương trình có nghiệm kép. Tính nghiệm kép này
b) Định m để phương trình có hai nghiệm.
c) Định m để phương trình vô nghiệm.

NL
25 tháng 4 2020 lúc 2:53

\(\Delta'=\left(m-1\right)^2+m\left(m-1\right)=\left(m-1\right)\left(2m-1\right)\)

a/ Để pt có nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\left(m-1\right)\left(2m-1\right)=0\end{matrix}\right.\) \(\Rightarrow m=\frac{1}{2}\)

b/ Để pt có 2 nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\left(m-1\right)\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>1\\m\le\frac{1}{2}\end{matrix}\right.\)

c/

Với \(m=1\Leftrightarrow-1=0\) pt vô nghiệm (thỏa mãn)

Với \(m\ne1\) để pt vô nghiệm

\(\Leftrightarrow\left(m-1\right)\left(2m-1\right)< 0\Leftrightarrow\frac{1}{2}< m< 1\)

Vậy \(\frac{1}{2}< m\le1\) thì pt vô nghiệm

Bình luận (0)

Các câu hỏi tương tự
LB
Xem chi tiết
LB
Xem chi tiết
LB
Xem chi tiết
XL
Xem chi tiết
TM
Xem chi tiết
TH
Xem chi tiết
HP
Xem chi tiết
LP
Xem chi tiết
TH
Xem chi tiết