a: \(A=\dfrac{6}{x-3}+\dfrac{2x^2}{x^2-1}+\dfrac{6-2x}{\left(x-3\right)\left(x^2-1\right)}\)
\(=\dfrac{6x^2-6+2x^3-6x^2+6-2x}{\left(x-3\right)\left(x^2-1\right)}\)
\(=\dfrac{2x^3-2x}{\left(x-3\right)\left(x^2-1\right)}=\dfrac{2x}{x-3}\)
b: Để A nguyên thì \(x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{4;2;5;6;0;9;-3\right\}\)
c: Thay x=2 vào A, ta được:
\(A=\dfrac{2\cdot2}{2-3}=-4\)
Thay x=-2 vào A, ta được:
\(A=\dfrac{-2\cdot2}{-2-3}=\dfrac{-4}{-5}=\dfrac{4}{5}\)