Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

NT

giúp mk ạ

giải hệ phương trình:\(\left\{{}\begin{matrix}\frac{3}{\sqrt{x-4}}+\frac{4}{y+2}=7\\\frac{5}{\sqrt{x-4}}-\frac{1}{y-2}=4\end{matrix}\right.\)

TQ
12 tháng 5 2019 lúc 13:51

ĐK: \(x>4,y\ne-2\)

Đặt a=\(\frac{1}{\sqrt{x-4}}\left(a>0\right)\),\(b=\frac{1}{y+2}\)

Vậy \(\left\{{}\begin{matrix}\frac{3}{\sqrt{x-4}}+\frac{4}{y+2}=7\\\frac{5}{\sqrt{x-4}}-\frac{1}{y-2}=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3a+4b=7\\5a-b=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3a+4b=7\\20a-4b=16\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}23a=23\\5a-b=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)(tm)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-4}}=1\\\frac{1}{y+2}=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\sqrt{x-4}=1\\y+2=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)(tm)

Vậy (x;y)=(5;-1)

Bình luận (0)

Các câu hỏi tương tự
PM
Xem chi tiết
CA
Xem chi tiết
PM
Xem chi tiết
VN
Xem chi tiết
NB
Xem chi tiết
OW
Xem chi tiết
TM
Xem chi tiết
HH
Xem chi tiết
NB
Xem chi tiết