Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(AB^2+AD^2=BD^2\)
\(\Leftrightarrow BD^2=6^2+8^2=100\)
hay BD=10(cm)
Ta có: ABCD là hình chữ nhật
mà O là giao điểm của hai đường chéo AC và BD
nên O là trung điểm chung của AC và BD
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(AH\cdot BD=AB\cdot AD\)
\(\Leftrightarrow AH=4.8\left(cm\right)\)
Ta có: ΔABD vuông tại A
mà AO là đường trung tuyến ứng với cạnh huyền BD
nên \(AO=\dfrac{BD}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHO vuông tại H, ta được:
\(AO^2=AH^2+HO^2\)
\(\Leftrightarrow HO^2=5^2-4.8^2=1.96\)
hay HO=1,4(cm)
Diện tích tam giác AHO là:
\(S_{AHO}=\dfrac{HA\cdot HO}{2}=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)