\(A=3^{n+2}-2^{n+3}+3^n-2^{n+2}\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+3}+2^{n+2}\right)\)
\(=3^n.\left(3^2+1\right)-2^{n+2}.\left(2+1\right)\)
\(=3^n.10-2^{n+2}.3\)
Ta có:
\(3^n⋮3\) và \(10⋮2\) \(\Rightarrow\left(3^n.10\right)⋮6\) (1)
\(2^{n+2}⋮2\) và \(3⋮3\Rightarrow\left(2^{n+2}.3\right)⋮6\) (2)
Từ (1) và (2) \(\Rightarrow\left(3^n.10-2^{n+2}.3\right)⋮6\)
Vậy \(A⋮6\)