24.
\(log\left(a^3b^2\right)=loga^3+logb^2=3loga+2logb=3x+2y\)
25.
\(f'\left(x\right)=0\) có 2 nghiệm bội lẻ \(x=\left\{-\dfrac{3}{2};1\right\}\) nên hàm có 2 cực trị
26.
\(\lim\limits_{x\rightarrow\infty}\dfrac{x^2+3x-4}{x^2-16}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{1+\dfrac{3}{x}-\dfrac{4}{x^2}}{1-\dfrac{16}{x^2}}=1\)
\(\Rightarrow y=1\) là TCN của đồ thị hàm số
\(\lim\limits_{x\rightarrow-4}\dfrac{x^2+3x-4}{x^2-16}=\lim\limits_{x\rightarrow-4}\dfrac{\left(x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\lim\limits_{x\rightarrow-4}\dfrac{x-1}{x-4}=\dfrac{5}{8}\) hữu hạn
\(\Rightarrow x=-4\) không phải tiệm cận đứng
\(\lim\limits_{x\rightarrow4^+}\dfrac{x^2+3x-4}{x^2-16}=+\infty\Rightarrow x=4\) là 1 TCĐ
Vậy đồ thị hàm số có 2 tiệm cận
27.
\(y'=x^2-2x+2\)
\(y'\left(1\right)=1\)
\(y\left(1\right)=\dfrac{7}{3}\)
Phương trình tiếp tuyến có dạng:
\(y=1\left(x-1\right)+\dfrac{7}{3}\Leftrightarrow y=x+\dfrac{4}{3}\)
28.
ĐKXĐ: \(x>0\)
\(\log x\le1\)
\(\Rightarrow x\le10\)
Kết hợp ĐKXĐ ta được \(x\in(0;10]\)
29.
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
Do SAB vuông cân tại S \(\Rightarrow SH=\dfrac{1}{2}AB=\dfrac{a}{2}\)
\(\Rightarrow V=\dfrac{1}{3}SH.a^2=\dfrac{a^3}{6}\)