Bài 7: Ôn tập cuối năm

DD

Không có mô tả.

giúp mình nốt câu này các bạn ơi

NL
10 tháng 5 2021 lúc 23:49

\(\left\{{}\begin{matrix}BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\\SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\end{matrix}\right.\)  \(\Rightarrow BD\perp\left(SAC\right)\) 

\(\Rightarrow BD\perp SC\)

Mặt khác \(BD\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)

b.

Từ A kẻ \(AH\perp SB\)

Ta có: \(\left\{{}\begin{matrix}AD\perp AB\\SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\Rightarrow AD\perp AH\)

\(\Rightarrow AH\) là đường vuông góc chung của AD và SB

\(\Rightarrow AH=d\left(SB;AD\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{2}{a^2}\Rightarrow AH=\dfrac{a\sqrt{2}}{2}\)

Gọi O là tâm đáy, từ O kẻ \(OK\perp SC\)

Mà \(BD\perp\left(SAC\right)\) theo câu a \(\Rightarrow BD\perp OK\)

\(\Rightarrow OK\) là đường vuông góc chung của SC và BD hay \(OK=d\left(SC;BD\right)\)

\(AC=AB\sqrt{2}=a\sqrt{2}\) ; \(SC=\sqrt{SA^2+AC^2}=a\sqrt{3}\)

\(OK=OC.sin\widehat{SCA}=\dfrac{1}{2}AC.\dfrac{SA}{SC}=\dfrac{a\sqrt{6}}{6}\)

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
AT
Xem chi tiết
2N
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết