LN

Giúp mình làm chi tiết xong trc 9h30 với! Mình đag cần gấp

LH
6 tháng 8 2021 lúc 21:25

a)PQ \(\left\{{}\begin{matrix}quaP\left(1;-4\right)\\vtcp\overrightarrow{PQ}\left(1;7\right)\Rightarrow vtpt\overrightarrow{n}\left(7;-1\right)\end{matrix}\right.\)

\(\Rightarrow PQ:7x-y-11=0\)

b) Gọi pt đt tâm (O) có dạng (C):\(x^2+y^2=R^2\)

Do (C) tiếp xúc với đt \(2x+y-3=0\)

\(\Rightarrow R=d_{\left(O;\Delta\right)}=\dfrac{\left|2.0+0-3\right|}{\sqrt{2^2+1}}=\dfrac{3\sqrt{5}}{5}\)

\(\Rightarrow\left(C\right):x^2+y^2=\dfrac{9}{5}\)

c)\(I\in\left(\Delta\right)\Rightarrow I\left(t;3-2t\right)\)

\(IQ=R\Leftrightarrow\sqrt{\left(2-t\right)^2+4t^2}=3\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2+\sqrt{29}}{5}\\t=\dfrac{2-\sqrt{29}}{5}\end{matrix}\right.\)\(\Rightarrow I\left(\dfrac{2+\sqrt{29}}{5};\dfrac{11-2\sqrt{29}}{5}\right);I\left(\dfrac{2-\sqrt{29}}{5};\dfrac{11+2\sqrt{29}}{5}\right)\)

Vậy pt đường tròn tâm I cần tìm là: \(\left(C\right)':\left(x-\dfrac{2+\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11-2\sqrt{29}}{5}\right)^2=9\) hoặc \(\left(C\right)':\left(x-\dfrac{2-\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11+2\sqrt{29}}{5}\right)^2=9\)

Bình luận (0)
NL
6 tháng 8 2021 lúc 21:28

a.

\(\overrightarrow{PQ}=\left(1;7\right)\Rightarrow\) đường thẳng PQ nhận \(\left(7;-1\right)\) là 1 vtpt

Phương trình PQ:

\(7\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow7x-y-11=0\)

b.

Do đường tròn tiếp xúc denta nên \(R=d\left(O;\Delta\right)\)

\(\Rightarrow R=\dfrac{\left|2.0-0-3\right|}{\sqrt{2^2+1^2}}=\dfrac{3}{\sqrt{5}}\)

Phương trình đường tròn: \(x^2+y^2=\dfrac{9}{5}\)

c.

Do I thuộc denta nên tọa độ có dạng: \(I\left(a;3-2a\right)\)

\(\Rightarrow\overrightarrow{IQ}=\left(2-a;2a\right)\) \(\Rightarrow IQ^2=\left(2-a\right)^2+4a^2\)

Do đường tròn qua Q nên \(IQ=R\Rightarrow IQ^2=R^2\)

\(\Rightarrow\left(2-a\right)^2+4a^2=9\)

\(\Rightarrow5a^2-4a-5=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{2+\sqrt{29}}{5}\\a=\dfrac{2-\sqrt{29}}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(\dfrac{2+\sqrt{29}}{5};\dfrac{11-2\sqrt{29}}{5}\right)\\I\left(\dfrac{2-\sqrt{29}}{5};\dfrac{11+2\sqrt{29}}{5}\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn:

\(\left(x-\dfrac{2+\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11-2\sqrt{29}}{5}\right)^2=9\)

\(\left(x-\dfrac{2-\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11+2\sqrt{29}}{5}\right)^2=9\)

Bình luận (0)