CK

Giúp mình giải câu c và d với ạ:

Gọi C là một điểm bất kì trên nửa đường tròn \((O)\), đường kính AB \(=\) R \(\left(C\ne A,C\ne B\right)\). Tia BC cắt tiếp tuyến tại A của nửa đường tròn tại M. Tiếp tuyến tại C của nửa đường tròn cắt AM tại I.

a, Chứng minh bốn điểm I, A, O, C cùng thuộc một đường tròn

b, Chứng minh OI \(\perp\) AC

c, Gọi D là giao điểm của OI và Ac. Vẽ OE vuông góc với BC \(\left(E\varepsilon BC\right)\). Chứng minh DE \(=\) R

d, Chứng minh IC\(^2\) \(=\) \(\dfrac{1}{4}\) MC . MB

NT
8 tháng 12 2023 lúc 12:48

a: Xét tứ giác IAOC có

\(\widehat{IAO}+\widehat{ICO}=90^0+90^0=180^0\)

=>IAOC là tứ giác nội tiếp

=>I,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

IA,IC là tiếp tuyến

Do đó: IA=IC

=>I nằm trên đường trung trực của AC(1)

ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OI là đường trung trực của AC

=>OI\(\perp\)AC

c: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Ta có: OI là đường trung trực của AC

=>OI vuông góc với AC tại trung điểm của AC

mà OI cắt AC tại D

nên OI\(\perp\)AC tại D và D là trung điểm của AC

Xét tứ giác CDOE có

\(\widehat{CDO}=\widehat{CEO}=\widehat{ECD}=90^0\)

=>CDOE là hình chữ nhật

=>CO=DE=R

d: Xét ΔIAC có IA=IC

nên ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

Ta có: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)MB tại C

=>ΔACM vuông tại C

Ta có: \(\widehat{IAC}+\widehat{IMC}=90^0\)(ΔACM vuông tại C)

\(\widehat{ICA}+\widehat{ICM}=\widehat{ACM}=90^0\)

mà \(\widehat{IAC}=\widehat{ICA}\)

nên \(\widehat{IMC}=\widehat{ICM}\)

=>IM=IC

mà IC=IA

nên IM=IA

=>I là trung điểm của MA

=>\(MA=2\cdot IC\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(MC\cdot MB=MA^2\)

=>\(MC\cdot MB=\left(2\cdot IC\right)^2=4\cdot IC^2\)

=>\(IC^2=\dfrac{1}{4}\cdot MC\cdot MB\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TX
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
MH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết