46:
(SAB) và (SAD) cùng vuông góc (ABCD)
=>SA vuông góc (ABCD)
=>SA vuông góc AC
ΔSAC vuông tại A
=>\(SC=\sqrt{AS^2+AC^2}=a\sqrt{2}\)
\(V=\dfrac{1}{3}\cdot SA\cdot S_{ABCD}=\dfrac{1}{3}\cdot a\sqrt{2}\cdot a^2=\dfrac{a^3\sqrt{2}}{3}\)
=>Chọn C
47:
\(\dfrac{V_{BC.A'B'C'}}{V_{ABC.A'B'C'}}=\dfrac{2}{3}\)
=>V1=2/3*V
=>Chọn A
48:
AB vuông góc AC
AB vuông góc AD
Do đó: AB vuông góc (ACD)
\(V_{ABCD}=\dfrac{1}{3}\cdot AB\cdot S_{ACD}=\dfrac{1}{3}\cdot5\cdot\dfrac{1}{2}\cdot12\cdot10=100\)
=>Chọn A