Bài 5: Khoảng cách

NH

Giúp mình bài 4 với ạ mình cảm ơn

NL
22 tháng 4 2022 lúc 20:27

a.

\(SH\perp\left(ABC\right)\Rightarrow SH=d\left(S;\left(ABC\right)\right)\)

\(SH\perp\left(ABC\right)\Rightarrow SH\perp BC\Rightarrow\Delta SBH\) vuông tại H

\(BH=\dfrac{1}{2}BC=a\Rightarrow SH=\sqrt{SB^2-BH^2}=a\sqrt{3}\)

\(SH\perp\left(ABC\right)\Rightarrow HA\) là hình chiếu vuông góc của SA lên (ABC)

\(\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)

\(AH=\dfrac{1}{2}BC=a\) (trung tuyến ứng với cạnh huyền)

\(\Rightarrow tan\widehat{SAH}=\dfrac{SH}{AH}=\sqrt{3}\Rightarrow\widehat{SAH}=60^0\)

b.

H là trung điểm BC, M là trung điểm AB \(\Rightarrow MH\) là đường trung bình tam giác ABC

\(\Rightarrow MH||AC\Rightarrow MH\perp AB\) (do \(AB\perp AC\))

Lại có \(SH\perp\left(ABC\right)\Rightarrow SH\perp AB\)

\(\Rightarrow AB\perp\left(SMH\right)\)

Mà \(AB=\left(SAB\right)\cap\left(ABC\right)\Rightarrow\widehat{SMH}\) là góc giữa (SAB) và (ABC)

\(AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\) \(\Rightarrow MH=\dfrac{1}{2}AC=\dfrac{a\sqrt{3}}{2}\) (đường trung bình)

\(\Rightarrow tan\widehat{SMH}=\dfrac{SH}{MH}=2\Rightarrow\widehat{SMH}\approx63^023'\)

c.

Theo cmt: \(\left\{{}\begin{matrix}MH\perp SH\\MH\perp AB\end{matrix}\right.\) \(\Rightarrow MH\) là đường vuông góc chung của SH và AB

\(\Rightarrow d\left(SH;AB\right)=MH=\dfrac{a\sqrt{3}}{2}\)

Từ H kẻ HK vuông góc SM (K thuộc SM)

\(AB\perp\left(SMH\right)\Rightarrow AB\perp HK\)

\(\Rightarrow HK\perp\left(SAB\right)\Rightarrow HK=d\left(H;\left(SAB\right)\right)\)

Hệ thức lượng trong tam giác vuông SMH:

\(HK=\dfrac{SH.MH}{\sqrt{SH^2+MH^2}}=\dfrac{a\sqrt{15}}{5}\)

Bình luận (0)
NL
22 tháng 4 2022 lúc 20:28

undefined

Bình luận (0)

Các câu hỏi tương tự
GM
HT
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
MA
Xem chi tiết
MB
Xem chi tiết
VT
Xem chi tiết
GH
Xem chi tiết
TH
Xem chi tiết