KD

Giúp mình 4 câu này

NL
30 tháng 3 2021 lúc 16:34

7.

\(\sqrt{4-x}\ge0\Rightarrow\sqrt{4-x}+\sqrt{3}\ge\sqrt{3}\) đáp án D

8.

\(y=x^2+\dfrac{1}{2x}+\dfrac{1}{2x}\ge3\sqrt[3]{\dfrac{x^2}{4x^2}}=\dfrac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(x^2=\dfrac{1}{2x}\Leftrightarrow x=\dfrac{1}{\sqrt[3]{2}}\) đáp án D

9.

\(y\ge2\sqrt{\dfrac{2x}{x}}-\left(1+\sqrt{2}\right)^2=2\sqrt{2}-\left(3+2\sqrt{2}\right)=-3\) đáp án B

10.

\(y'=\dfrac{1-2x}{\left(x-2\right)^2\sqrt{x^2-1}}\Rightarrow\) hàm đồng biến trên \((-\infty;-1]\) và nghịch biến trên \(\left[1;\dfrac{3}{2}\right]\)

\(f\left(-1\right)=f\left(1\right)=0\) ; \(f\left(\dfrac{3}{2}\right)=-\sqrt{5}\)

\(\Rightarrow f\left(x\right)_{max}=0\) ; \(f\left(x\right)_{min}=-\sqrt{5}\) đáp án A

11.

\(f'\left(x\right)=\dfrac{5-x}{\left(x^2+2\right)\sqrt{x^2+5}}=0\Rightarrow x=5\) \(\Rightarrow f\left(5\right)=\dfrac{\sqrt{30}}{5}\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=1\) ; \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-1\)

Hàm đạt GTLN tại \(x=5\) và ko có GTNN, đáp án D

Bình luận (0)

Các câu hỏi tương tự
2T
Xem chi tiết
KD
Xem chi tiết
2T
Xem chi tiết
MT
Xem chi tiết
KD
Xem chi tiết
NL
Xem chi tiết
GF
Xem chi tiết
GF
Xem chi tiết
TT
Xem chi tiết