GIÚP MÌNH 2 CÂU CUỐI THÔI
cho hình thang ABCD (AB//CD) gọi giao điểm 2 đg chéo AC và BD là O, OA=4cm, OC=8cm, AB=5cm
a) tính CD, c/m: AO.OD=OC.OB
b) qua O kẻ đg thẳng HK ⊥ AB( H∈AB,K∈CD). Tính \(\dfrac{OH}{OK}\)
c) qua O kẻ đg thẳng // với 2 đáy, cắt AD, BC lần lượt tại E, F. C/m: \(\dfrac{AE}{AD}+\dfrac{CF}{BC}=1\)
b) -Xét △AOH có: AB//CD (gt).
\(\Rightarrow\dfrac{AO}{OC}=\dfrac{OH}{OK}\) (định lí Ta-let).
\(\Rightarrow\dfrac{OH}{OK}=\dfrac{4}{8}=\dfrac{1}{2}\).
c) -Xét △ADC có: OE//DC (gt).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AO}{AC}\) (định lí Ta-let).
-Xét △ABC có: OF//AB (gt).
\(\Rightarrow\dfrac{AO}{AC}=\dfrac{BF}{BC}\) (định lí Ta-let).
Mà \(\dfrac{AE}{AD}=\dfrac{AO}{AC}\) nên \(\dfrac{AE}{AD}=\dfrac{BF}{BC}\)
\(\Rightarrow\dfrac{AE}{AD}+\dfrac{CF}{BC}=\dfrac{BF}{BC}+\dfrac{CF}{BC}=\dfrac{BC}{BC}=1\)