a: Xét (SAD) và (SBC) có
AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
b: Chọn mp(SCD) có chứa SC
Trong mp(ABCD), gọi E là giao điểm của AB và CD
\(M\in SD\subset\left(SCD\right);M\in\left(MAB\right)\)
=>\(M\in\left(SCD\right)\cap\left(AMB\right)\)
\(E\in CD\subset\left(SCD\right);E\in AB\subset\left(MAB\right)\)
Do đó: \(E\in\left(SCD\right)\cap\left(AMB\right)\)
Do đó: (SCD) giao (AMB)=ME
Gọi I là giao của SC với ME
=>I là giao điểm của SC với mp(MAB)