1.
\(\left(2+\sqrt{3}\right)^{-1.2024}=\left(\dfrac{1}{2+\sqrt{3}}\right)^{2024}=\left(\dfrac{2-\sqrt{3}}{1}\right)^{2024}=\left(2-\sqrt{3}\right)^{2024}\)
\(\Rightarrow\dfrac{\left(2-\sqrt{3}\right)^{2024}}{\left(2+\sqrt{3}\right)^{-2024}}=1\)
2.
\(T=2^{10}.\left(\dfrac{1}{2}\right)^8+2024.log_28=2^2+2024log_22^3=4+2024.3=...\)