Cho (O;R) hai đường kính AB,CD vuông góc với nhau. Trên tia đối của tia CO lấy S. SA cắt (O) tại M, tiếp tuyến của đường tròn ở M cắt CD tại P, BM cắt CD ở T
a) c/m PT.MA=MT.OA
b) c/m PS=PM=PT
c) Biết PM= R. tính TA.SM theo R
Cho đường tròn (O;R), 2 đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CO lấy điểm S. SA cắt đường tròn ở M, tiếp tuyến của đường tròn ở M cắt CD ở P, BM cắt CD ở T. Cm:
a) PT.MA = MT.OA
b) PS = PM = OT
c) Biết PM = R, tính TA.SM theo R
Cho đường tròn tâm O bán kính R , 2 đường kính AB và CD vuông với nhau. Trên tia đối của tia CO lấy điểm S , SA cắt đường tròn ở M , tiếp tuyến của đường tròn ở M cắt CD ở P , BM cắt CD ở T. Chứng minh :
a) PT . MA = MT . OA
b) PS = PM = PT
c) Biết PM = R . Tính TA . SM theo R .
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
Cho AB và CD là hai đường kính vuông góc của(O;R). Trên tia đối của CO lấy điểm S. SA cắt (O) tại M. Tiếp tuyến tại M với (O) cắt CD tại E, BM cắt CD tại F. a) c/m EA. AM=MF.OA
b) SB cắt (O) tại I. c/m A,I,F thẳng hàng
c) Giả sử EM=R. Tính FA.SM theo R
d) kẻ MH vuông góc với AB tại H. xác định vị trí điểm S để diện tích tam giác MHD lớn nhất
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MH ⊥ AB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nhất
Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M M khác O . CM cắt đường tròn tâm O tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở Q
a) c/m 4 điểm m ,o,q,n thẳng hàng
b)c/ CM*CN=CO*CD
Cho đường tròn ( O ; R ) đường kính AB . Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R , từ P kẻ tiếp tuyến tiếp xúc với ( O ) tại M .
1 . Cm : Tứ giác APMO nội tiếp được một đường tròn
2 . Cm : BM // OP
3 . Đường thẳng vuông góc với AB ở O cắt tia BM tại N . Cm : tứ giác OBNP là hình bình hành
4 . Biết AN cắt OP tại K , PM cắt ON tại I ; PN và OM kéo dài cắt nhau tại J .
Cm : I , J , K thẳng hàng
Bài 4: (3,5 điểm) Cho đường tròn (O ; R) đường kính AB và điểm M bất kì thuộc đường tròn (M ≠ A, B) . Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a) Chứng minh: 4 điểm A, D, M , O cùng thuộc một đường tròn
b) Chứng minh: OD // BM và suy ra D là trung điểm của AN
c) Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh: BE là tiếp tuyến của đường tròn (O ; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên (O ; R) thì J chạy trên đường nào?