PB

Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F

a, Chứng minh: EM.AM = MF.OA

b, Chứng minh: ES = EM = EF

c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng

d, Cho EM = R, tính FA.SM theo R

e, Kẻ MH ⊥ AB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nhất

CT
30 tháng 4 2017 lúc 4:36

a, Chứng minh ∆MEF:∆MOA

b, ∆MEF:∆MOA mà AO=OM => ME=EF

c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng

d, FA.SM = 2 R 2

e,  S M H O = 1 2 OH.MH ≤  1 2 . 1 2 M O 2 = 1 4 R 2

=> M ở chính giữa cung AC

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
MB
Xem chi tiết
PH
Xem chi tiết
TT
Xem chi tiết
FM
Xem chi tiết
HT
Xem chi tiết
TN
Xem chi tiết
LT
Xem chi tiết
NT
Xem chi tiết