HL

Giúp em bài này với ạ (chi tiết+hình)

loading...  

NT
1 tháng 2 2024 lúc 14:41

a: Xét tứ giác APMQ có \(\widehat{APM}+\widehat{AQM}=90^0+90^0=180^0\)

nên APMQ là tứ giác nội tiếp đường tròn đường kính AM

Tâm O là trung điểm của AM

b: Ta có: ΔAHM vuông tại H

=>H nằm trên đường tròn đường kính AM

=>H nằm trên (O)

Ta có: ΔABC đều

mà AH là đường cao

nên AH là phân giác của góc BAC

Xét (O) có

\(\widehat{PAH}\) là góc nội tiếp chắn cung PH

\(\widehat{QAH}\) là góc nội tiếp chắn cung QH

\(\widehat{PAH}=\widehat{QAH}\left(cmt\right)\)

Do đó: \(sđ\stackrel\frown{HP}=sđ\stackrel\frown{HQ}\)

Xét (O) có

\(\widehat{QPH}\) là góc nội tiếp chắn cung QH

\(\widehat{HQP}\) là góc nội tiếp chắn cung HP

\(sđ\stackrel\frown{QH}=sđ\stackrel\frown{HP}\)

Do đó: \(\widehat{HPQ}=\widehat{HQP}\)

=>HQ=HP

=>H nằm trên đường trung trực của QP(1)

Ta có: OP=OQ

=>O nằm trên đường trung trực của QP(2)

Từ (1) và (2) suy ra HO là đường trung trực của PQ

=>HO\(\perp\)PQ

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
LH
Xem chi tiết
AN
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
TM
Xem chi tiết