a: Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{15}=\dfrac{CD}{10}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{2}\)
mà AD+CD=AC=15cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{2}=\dfrac{AD+CD}{3+2}=\dfrac{15}{5}=3\)
=>\(AD=3\cdot3=9cm;CD=2\cdot3=6\left(cm\right)\)
b: Xét ΔABC có BD' là phân giác góc ngoài
nên \(\dfrac{D'C}{D'A}=\dfrac{BC}{BA}\)
=>\(\dfrac{D'C}{D'C+CA}=\dfrac{10}{15}=\dfrac{2}{3}\)
=>\(\dfrac{D'C}{D'C+15}=\dfrac{2}{3}\)
=>\(3D'C=2\left(D'C+15\right)\)
=>D'C=30(cm)
Đúng 0
Bình luận (0)