BT

giúp e bài 13 14 vs ạloading...

NT
30 tháng 12 2023 lúc 21:12

Bài 14:

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

b: \(A=\dfrac{x}{2x+4}+\dfrac{3x+2}{x^2-4}\)

\(=\dfrac{x}{2\left(x+2\right)}+\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x\left(x-2\right)+2\left(3x+2\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+4x+4}{2\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{2\left(x-2\right)}\)

c: Đặt B=2*A

\(\Leftrightarrow B=\dfrac{2\cdot\left(x+2\right)}{2\left(x-2\right)}=\dfrac{x+2}{x-2}\)

Để B là số nguyên thì \(x+2⋮x-2\)

=>\(x-2+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;1;4;0;6\right\}\)

Bài 13:

1:

a: \(\dfrac{x^2-y^2}{x^2+xy}\cdot\dfrac{x+2y}{x-y}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x+2y\right)}{x\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x+2y}{x}\)

b: \(x^2\cdot\left(2x-3y^2\right)-4xy\left(1-xy\right)-2x^3\)

\(=2x^3-3x^2y^2-4xy+4x^2y^2-2x^3\)

\(=x^2y^2-4xy\)

2:

\(f\left(x-2\right)=3\left(x-2\right)^2-4\)

\(=3\left(x^2-4x+4\right)-4\)

\(=3x^2-12x+8\)

\(f\left(4\right)=3\cdot4^2-4=48-4=44\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
H24
Xem chi tiết
CD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LG
Xem chi tiết