Các biến cố thuận lợi (1;6);(6;1);(2;5);(5;2);(3;4);(4;3) có 6 phần tử
Các biến cố thuận lợi (1;6);(6;1);(2;5);(5;2);(3;4);(4;3) có 6 phần tử
gieo một con xúc sắc 2 lần. Xác định số phần tử trong biến cố A: " tổng số chấm trong 2 lần gieo bằng 8".
Một con súc sắc được gieo ba lần. Quan sát số chấm xuất hiện:
a) Xây dựng không gian mẫu.
b) Xác định các biến cố sau:
A. "Tổng số chấm trong ba lần gieo là 6";
B. "Số chấm trong lần gieo thứ nhất bằng tổng các số chấm của lần gieo thứ hai và thứ ba".
Gieo ngẫu nhiên một con súc sắc 3 lần liên tiếp. Gọi a,b,c lần lượt là số chấm xuất hiện ở 3 lần gieo. Xác suất của biến cố “ số a b c ¯ chia hết cho 45” là
A . 1 216
B . 1 54
C . 1 72
D . 1 108
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình có nghiệm.
A. .
B. .
C. .
D. .
Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất để 1) lần thứ nhất được số chấm chẵn và lần thứ hai được số chấm lẻ. 2) hai lần gieo có số chấm như nhau. 3) mặt 6 chấm xuất hiện ít nhất một lần. 4) tổng số chấm xuất hiện trong hai lần gieo bé hơn 10.
Gieo một con súc sắc cân đối, đồng chất liên tiếp hai lần. Biết tổng số chấm sau hai lần gieo là m. Tính xác suất để sau hai lần gieo phương trình x 2 - m x + 21 = 0 có nghiệm
A. 1 6
B. 1 4
C. 1 3
D. 3 13
Gieo con súc sắc 3 lần Tính xác suất của biến cố gieo có đúng 1 lần ra 6 chấm
Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm:
Gieo 1 con súc sắc cân đối và đồng chất 2 lần. Xác suất để tổng số chấm của 2 lần gieo bằng 9 là :
A. 1 8
B. 1 6
C. 1 10
D. 1 9