Violympic toán 9

TQ

Giair Hệ phương trình nghiệm nguyên : \(\left\{{}\begin{matrix}x+y+z=3\\x^3+y^3+z^3=3\end{matrix}\right.\)

AH
18 tháng 1 2021 lúc 14:22

Lời giải:

Theo hằng đẳng thức đáng nhớ:

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$

$\Leftrightarrow 3=27-3(x+y)(y+z)(x+z)$

$\Leftrightarrow (x+y)(y+z)(x+z)=8$Đặt $(x+y,y+z,x+z)=(a,b,c)$ thì $abc=8$ và $a+b+c=6$Do $a+b+c=6>0$ nên $(a,b,c)$ sẽ là 3 số dương hoặc $1$ dương $2$ âm.

TH1: $a,b,c$ đều dương.

Áp dụng BĐT AM-GM: $a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{8}=6$

Dấu "=" xảy ra khi $a=b=c=2$

$\Leftrightarrow x+y=y+z=x+z=2\Leftrightarrow x=y=z=1$

TH2: $a,b,c$ có 1 số dương 2 số âm. Giả sử $a$ dương và $b,c$ âm.

$a+b+c=6$ nên $a>6$. Mà $abc=8$ nên $a=8$

$\Rightarrow bc=1$ và $b+c=-2$

$\Rightarrow b=c=-1$

$\Rightarrow x=y=4; z=-5$

Vậy $(x,y,z)=(1,1,1); (4,4,-5)$ và hoán vị.

 

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
EC
Xem chi tiết
LS
Xem chi tiết
NN
Xem chi tiết
NU
Xem chi tiết
HN
Xem chi tiết
NM
Xem chi tiết
LT
Xem chi tiết
TS
Xem chi tiết