a: \(4x-2=m\left(mx-1\right)\)(1)
=>\(m^2x-m=4x-2\)
=>\(x\left(m^2-4\right)=m-2\)
=>x(m-2)(m+2)=m-2
TH1: m=2
Phương trình (1) sẽ trở thành \(x\left(2-2\right)\left(2+2\right)=2-2\)
=>0x=0(luôn đúng)
TH2: m=-2
Phương trình (1) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-2-2\)
=>0x=-4
=>\(x\in\varnothing\)
TH3: \(m\notin\left\{2;-2\right\}\)
Phương trình (1) sẽ trở thành: \(x\left(m-2\right)\left(m+2\right)=m-2\)
=>x(m+2)=1
=>\(x=\dfrac{1}{m+2}\)
f: \(m^2x-3=4x-\left(m-1\right)\)(2)
=>\(m^2x-4x=-m+1+3\)
=>\(x\left(m^2-4\right)=-m+2\)
=>\(x\left(m-2\right)\left(m+2\right)=-\left(m-2\right)\)
TH1: m=2
Phương trình (2) sẽ trở thành: \(x\left(2-2\right)\left(2+2\right)=-\left(2-2\right)\)
=>0x=0(luôn đúng)
TH2: m=-2
Phương trình (2) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-\left(-2-2\right)\)
=>0x=4
=>\(x\in\varnothing\)
TH3: \(m\notin\left\{2;-2\right\}\)
Phương trình (2) sẽ là: x(m-2)(m+2)=-(m-2)
=>x(m+2)=-1
=>\(x=-\dfrac{1}{m+2}\)
g: \(m^3x-4=m^2+4mx-4m\)(3)
=>\(m^3x-4mx=m^2-4m+4\)
=>\(x\left(m^3-4m\right)=\left(m-2\right)^2\)
=>\(x\cdot m\cdot\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)
TH1: m=2
Phương trình (3) sẽ trở thành: \(x\cdot2\cdot\left(2+2\right)\left(2-2\right)=\left(2-2\right)^2\)
=>0x=0(luôn đúng)
TH2: m=0
Phương trình (3) sẽ trở thành:
\(x\cdot0\cdot\left(0+2\right)\left(0-2\right)=\left(0-2\right)^2\)
=>0x=4
=>\(x\in\varnothing\)
TH3: m=-2
Phương trình (3) sẽ trở thành;
\(x\cdot\left(-2\right)\left(-2+2\right)\left(-2-2\right)=\left(-2-2\right)^2\)
=>0x=16
=>\(x\in\varnothing\)
TH4: \(m\notin\left\{0;2;-2\right\}\)
Phương trình (3) sẽ trở thành:
\(x\cdot m\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)
=>\(x=\dfrac{\left(m-2\right)^2}{m\left(m+2\right)\left(m-2\right)}=\dfrac{m-2}{m\left(m+2\right)}\)