Violympic toán 9

H24

Giải pt:

\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)

NL
22 tháng 6 2021 lúc 5:29

ĐKXĐ: \(\left[{}\begin{matrix}0\le x\le2-\sqrt{3}\\x\ge2+\sqrt{3}\end{matrix}\right.\)

\(2x+2+2\sqrt{x^2-4x+1}=6\sqrt{x}\)

\(\Leftrightarrow\left(2x+2-5\sqrt{x}\right)+\left(\sqrt{4x^2-16x+4}-\sqrt{x}\right)=0\)

\(\Leftrightarrow\dfrac{4x^2-17x+4}{2x+2+5\sqrt{x}}+\dfrac{4x^2-17x+4}{\sqrt{4x^2-16x+4}+\sqrt{x}}=0\)

\(\Leftrightarrow\left(4x^2-17x+4\right)\left(\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{\sqrt{4x^2-16x+4}+\sqrt{x}}\right)=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
MV
Xem chi tiết
HL
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
BM
Xem chi tiết
BB
Xem chi tiết