Violympic toán 9

HL

Giải pt

a )\(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\)

b) \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)

c) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)

MP
18 tháng 9 2018 lúc 13:56

a) điều kiện xác định : \(x\ge1\)

ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)

\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm

b) điều kiện xác định \(x\ge3\)

ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)

\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm

c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)

ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
EH
Xem chi tiết
TT
Xem chi tiết
DC
Xem chi tiết
KN
Xem chi tiết
MD
Xem chi tiết
TS
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
PP
Xem chi tiết