Bài 5: Phương trình chứa ẩn ở mẫu

NT

Giải pt:\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)

MP
6 tháng 2 2018 lúc 20:46

điều kiện xác định : \(x\ne-2\)

ta có : \(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)

\(\Leftrightarrow\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}-\dfrac{5}{x^2-2x+4}=0\)

\(\Leftrightarrow\dfrac{2}{x+2}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{5}{x^2-2x+4}=0\)

\(\Leftrightarrow\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-4x+8}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{5x+10}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-4x+8-2x^2-16-5x-10}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)

\(\Leftrightarrow\dfrac{-9x-18}{\left(x+2\right)\left(x^2-2x+4\right)}=0\Leftrightarrow-9x-18=0\)

\(\Leftrightarrow-9x=18\Leftrightarrow x=-2\left(loại\right)\)

vậy phương trình vô nghiệm

Bình luận (0)
H24
6 tháng 2 2018 lúc 20:33

Giải:

\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\) (1)

ĐKXĐ: \(x\ne-2\)

\(\left(1\right)\Leftrightarrow\dfrac{2\left(x^2-2x+4\right)}{x^3+8}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5\left(x+2\right)}{x^3+8}\)

\(\Rightarrow2\left(x^2-2x+4\right)-2x^2+16=5\left(x+2\right)\)

\(\Rightarrow2x^2-4x+8-2x^2+16=5x+10\)

\(\Rightarrow-4x-5x=10-8-16\)

\(\Rightarrow-9x=-14\)

\(\Rightarrow x=-\dfrac{14}{-9}=\dfrac{14}{9}\) (thoả mãn ĐKXĐ)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
GH
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
NS
Xem chi tiết
DT
Xem chi tiết
BT
Xem chi tiết
DT
Xem chi tiết
CS
Xem chi tiết