Bài 5: Phương trình chứa ẩn ở mẫu

H24

Giải pt :

\(\dfrac{x+2}{x^2+2x+4}+\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

MP
16 tháng 2 2018 lúc 0:42

điều kiện xác định \(x\ne0\)

ta có : \(\dfrac{x+2}{x^2+2x+4}+\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2-2x+4\right)+\left(x+2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{x^3-2x^2+4x+2x^2-4x+8+x^3+2x^2+4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{2x^3+4x^2+8x+16}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow2x^3+4x^2+8x+16=\dfrac{6}{x}\Leftrightarrow x\left(2x^3+4x^2+8x+16\right)=6\)

\(\Leftrightarrow2x^4+4x^3+8x^2+16x=6\Leftrightarrow2x^4+4x^3+8x^2+16x-6=0\)

tới đây chắc bn bấm máy tính tìm nghiệm đi nha

Bình luận (1)

Các câu hỏi tương tự
GH
Xem chi tiết
QN
Xem chi tiết
NY
Xem chi tiết
DT
Xem chi tiết
SK
Xem chi tiết
GP
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
CS
Xem chi tiết