Bài 1: Căn bậc hai

LN

giải PT

DL
20 tháng 6 2022 lúc 11:05

<=>

\(\dfrac{5}{2}.4.\sqrt{x-2}-16-\dfrac{1}{5}.25.\sqrt{x-2}=0\)

<=>

\(10\sqrt{x-2}-5\sqrt{x-2}-16=0\)

<=>

\(5\sqrt{x-2}-16=0\)

=> \(5\sqrt{x-2}=16\)

=> \(\sqrt{x-2}=\dfrac{16}{5}\)

=> \(x-2=\left(\dfrac{16}{5}\right)^2=\dfrac{256}{25}\)

=> \(x=\dfrac{256}{25}+2=\dfrac{306}{25}\)

Bình luận (2)
NT
20 tháng 6 2022 lúc 12:48

\(\dfrac{5}{2}\sqrt{4x-8}-16=\dfrac{1}{5}\sqrt{25x-50}\)

\(ĐK:x\ge2\)

\(\Leftrightarrow\dfrac{5}{2}\sqrt{4\left(x-2\right)}-16=\dfrac{1}{5}\sqrt{25\left(x-2\right)}\)

Đặt \(x-2=a;a\ge0\)

\(\Leftrightarrow\dfrac{5}{2}\sqrt{4a}-16=\dfrac{1}{5}\sqrt{25a}\)

\(\Leftrightarrow\dfrac{5}{2}.2\sqrt{a}-\dfrac{1}{5}.5\sqrt{a}=16\)

\(\Leftrightarrow5\sqrt{a}-\sqrt{a}-16=0\)

\(\Leftrightarrow4\sqrt{a}-16=0\)

\(\Leftrightarrow4\left(\sqrt{a}-4\right)=0\)

\(\Leftrightarrow\sqrt{a}-4=0\)

\(\Leftrightarrow\sqrt{a}=4\)

\(\Leftrightarrow a=16\left(tm\right)\)

\(\rightarrow x-2=16\)

\(\Leftrightarrow x=18\left(tm\right)\)

Vậy \(S=\left\{18\right\}\)

 

Bình luận (0)