HM

giải pt x^2-6x-8=0

HM
22 tháng 5 2018 lúc 15:40

ngắn gọn dễ hiểu nha

Bình luận (0)
PQ
22 tháng 5 2018 lúc 15:45

Ta có : 

\(x^2-6x-8=0\)

\(\Leftrightarrow\)\(\left(x^2-6x+9\right)-17=0\)

\(\Leftrightarrow\)\(\left(x^2-2.3x+3^2\right)-17=0\)

\(\Leftrightarrow\)\(\left(x-3\right)^2-17=0\)

\(\Leftrightarrow\)\(\left(x-3\right)^2=17\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=\sqrt{17}\\x-3=-\sqrt{17}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{17}\\x=3-\sqrt{17}\end{cases}}}\)

Vậy \(x=3+\sqrt{17}\) hoặc \(x=3-\sqrt{17}\)

Chúc bạn học tốt ~ 

Bình luận (0)
VH
22 tháng 5 2018 lúc 15:45

\(x^2-6x-8=0\)

\(\left(a=1;b=-6;b'=-3;c=-8\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(-3\right)^2-1.\left(-8\right)\)

\(=9+8\)

\(=17>0\)

\(\sqrt{\Delta}=\sqrt{17}\)

Vay : phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{3+\sqrt{17}}{1}=3+\sqrt{17}\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{3-\sqrt{17}}{1}=3-\sqrt{17}\)

OK CHÚC BẠN HỌC TỐT !!! 

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
M8
Xem chi tiết
M0
Xem chi tiết
YH
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
VF
Xem chi tiết
NT
Xem chi tiết