giải hệ pt:
\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\end{matrix}\right.\)
Rút gọn biểu thức \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\) với x ≥ 2
B=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4-2}}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4+2}}\)
Giải các phương trình vô tỉ sau:
a. \(2\sqrt{x}-x+\frac{3}{\sqrt{x}}=\sqrt{2x\sqrt{x}+20x-6}\)
b. \(\left(3x-4\right)\sqrt{-x^2+2x+11}=4x^2-x-4\)
c. \(\sqrt{2x+3}+\sqrt{x+1}=3x+\sqrt{\left(2x+3\right)\left(x+1\right)}\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
Giải pt : a) \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
b) \(\left(x-1\right)\sqrt{x^2+5}+x=x^2+1\)
c)\(\sqrt{x+2}+2x-10=\sqrt{2x-3}\)
d)\(\sqrt{2x-3}-\sqrt{x}=2x-6\)
e) \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
1.Rút gọn biểu thức \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)với \(x\ge2\)
2. cho \(a=\sqrt{17}-1\). Tính giá trị của biểu thức \(P=\left(a^5+2a^4-17a^3-a^2+18a-17\right)^{2018}\)
1,Giải PT
a,\(\sqrt{100.\left(x-3\right)}=\sqrt{20}\)
b,\(\sqrt{\left(x-3\right)^2}=7\)
c,\(\sqrt{4x^2+4x+1}=6\)
d,\(\sqrt{x^2-4x+4}-2x+5=0\)
e,\(\sqrt{3x^2}=x+2\)
f,\(\sqrt{x^2+6x+9}=3x-6\)
Giải phương trình:
a, \(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
b, \(\left(x+3\right)\sqrt{\left(4-x\right)\left(12+x\right)}=28-x\)
c, \(\sqrt{x^3-x}=2x^2-x-2\)
d, \(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)