Chương I - Căn bậc hai. Căn bậc ba

LH

Giải phương trình:

a, \(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)

b, \(\left(x+3\right)\sqrt{\left(4-x\right)\left(12+x\right)}=28-x\)

c, \(\sqrt{x^3-x}=2x^2-x-2\)

d, \(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)

NL
28 tháng 6 2019 lúc 17:47

a/

\(\Leftrightarrow2\left(x^2-x+1\right)-\left(x^2+x+1\right)=-\frac{\sqrt{3}}{3}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Leftrightarrow6a^2+\sqrt{3}ab-3b^2=0\)

\(\Leftrightarrow\left(3a-\sqrt{3}b\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow3a-\sqrt{3}b=0\Rightarrow b=\sqrt{3}a\)

\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}\sqrt{x^2-x+1}\)

\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)

b/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}x+3=a\\\sqrt{\left(4-x\right)\left(12+x\right)}=b\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=x^2+6x+9+48-8x-x^2=57-2x=2\left(28-x\right)+1\)

\(\Rightarrow28-x=\frac{a^2+b^2-1}{2}\)

Phương trình trở thành:

\(ab=\frac{a^2+b^2-1}{2}\Leftrightarrow\left(a-b\right)^2=1\Leftrightarrow\left[{}\begin{matrix}a+1=b\\a-1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=\sqrt{\left(4-x\right)\left(12+x\right)}\\x+2=\sqrt{\left(4-x\right)\left(12+x\right)}\end{matrix}\right.\) \(\Leftrightarrow...\)

Bình luận (0)
NL
28 tháng 6 2019 lúc 17:51

c/ ĐKXĐ: ...

\(\sqrt{x\left(x^2-1\right)}=2\left(x^2-1\right)-x\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{x^2-1}=b\ge0\end{matrix}\right.\)

\(ab=2a^2-b^2\Leftrightarrow2a^2-ab-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\2a+b=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x}=\sqrt{x^2-1}\)

\(\Leftrightarrow x^2-x-1=0\)

d/ Là \(2x^2+5\) hay \(2x+5\) bạn?

Bình luận (2)

Các câu hỏi tương tự
QE
Xem chi tiết
LG
Xem chi tiết
QE
Xem chi tiết
AQ
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
VD
Xem chi tiết
BH
Xem chi tiết
LD
Xem chi tiết