Violympic toán 9

NN

giải pt vô tỉ sau :

a) \(\sqrt{x+2+2\sqrt{x+1}}\) + \(\sqrt{x+10-6\sqrt{x+1}}\) = 2\(\sqrt{x+2-2\sqrt{x+1}}\)

b) x + \(\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}\)= 2

NL
3 tháng 3 2019 lúc 15:10

a/ ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:

\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)

\(\Leftrightarrow-2=-2\) (đúng)

- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)

- Nếu \(0< x< 8\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)

\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)

Vậy nghiệm của pt đã cho là \(x\ge8\)

Bình luận (0)
NL
3 tháng 3 2019 lúc 15:17

b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)

Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:

\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)

\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)

\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)

\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)

Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
NS
Xem chi tiết
TA
Xem chi tiết
NS
Xem chi tiết
TL
Xem chi tiết
TS
Xem chi tiết
NT
Xem chi tiết
MD
Xem chi tiết
NT
Xem chi tiết