Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Phương trình chứa căn

LT

giải pt

\(\sqrt{2x-1}\) + x\(^2\)-3x +1=0

SG
5 tháng 3 2017 lúc 22:04

\(\sqrt{2x-1}+x^2-3x+1=0\) (ĐKXĐ: \(x\ge\dfrac{1}{2}\))

\(\Leftrightarrow\sqrt{2x-1}=-x^2+3x-1\)

\(\Leftrightarrow\left(\sqrt{2x-1}\right)^2=\left(-x^2+3x-1\right)^2=\left(x^2+1-3x\right)^2\)

\(\Leftrightarrow2x-1=x^4+1+9x^2+2\left(x^2-3x-x^2.3x\right)\)

\(\Leftrightarrow2x-1=x^4+9x^2+1+2x^2-6x-6x^3\)

\(\Leftrightarrow x^4-6x^3+11x^2-8x+2=0\)

\(\Leftrightarrow x^4-x^3-5x^3+5x^2+6x^2-6x-2x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-5x^2+6x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2-4x^2+4x+2x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-4x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\left(x-2\right)^2-2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-2\right)^2=2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=\sqrt{2}+2\left(TM\right)\\x=-\sqrt{2}+2\left(TM\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
AP
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
KM
Xem chi tiết
H24
Xem chi tiết