Bài 2: Phương trình lượng giác cơ bản

TL

Giải PT sau:

tan( 3x - \(\dfrac{\pi}{2}\) ) + cotx = 0

Mọi người giải giúp mình với!!!

MP
2 tháng 9 2018 lúc 10:05

điều kiện xác định \(\left\{{}\begin{matrix}cos\left(3x-\dfrac{\pi}{2}\right)\ne0\\sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{\pi}{2}\ne\dfrac{\pi}{2}+k2\pi\\x\ne k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{3}+\dfrac{2}{3}k\pi\\x\ne k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

ta có : \(tan\left(3x-\dfrac{\pi}{2}\right)+cotx=0\)

\(\Leftrightarrow tan\left(3x-\dfrac{\pi}{2}\right)+cot\left(\dfrac{\pi}{2}-\left(\dfrac{\pi}{2}-x\right)\right)=0\)

\(\Leftrightarrow tan\left(3x-\dfrac{\pi}{2}\right)-tan\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow tan\left(3x-\dfrac{\pi}{2}\right)=tan\left(\dfrac{\pi}{2}-x\right)\) \(\Leftrightarrow3x-\dfrac{\pi}{2}=\dfrac{\pi}{2}-x+k\pi\Leftrightarrow4x=\pi+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{4}\left(k\in Z\right)\left(tmđk\right)\)

vậy phương trình có một hệ nghiệm duy nhất là \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{4}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
SB
Xem chi tiết
VT
Xem chi tiết
TV
Xem chi tiết
NS
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết