NA

giải pt: 5\(\sqrt{x^3+1}\)=2(x2+2)

NL
5 tháng 10 2021 lúc 20:53

ĐKXĐ: \(x\ge-1\)

\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=x^2+2\)

Phương trình trở thành:

\(5ab=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+1\right)=x^2-x+1\\x+1=4\left(x^2-x+1\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết