Bài 1: Hàm số lượng giác

VL

Giải pt

1. cos3x+ sin3x- sin6x =0

2. Sinx- 2cos^2(x/2)+sin2x= -2

NL
4 tháng 10 2020 lúc 15:55

1.

\(\Leftrightarrow cos3x+sin3x-2sin3x.cos3x=0\)

\(\Leftrightarrow cos3x+sin3x-\left(2sin3x.cos3x+1\right)+1=0\)

\(\Leftrightarrow cos3x+sin3x-\left(sin3x+cos3x\right)^2+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x+cos3x=\frac{\sqrt{5}+1}{2}\\sin3x+cos3x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x+\frac{\pi}{4}\right)=\frac{\sqrt{10}+\sqrt{2}}{4}>1\left(l\right)\\sin\left(3x+\frac{\pi}{4}\right)=\frac{\sqrt{2}-\sqrt{10}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{4}=arcsin\left(\frac{\sqrt{2}-\sqrt{10}}{4}\right)+k2\pi\\3x+\frac{\pi}{4}=\pi-arcsin\left(\frac{\sqrt{2}-\sqrt{10}}{4}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
4 tháng 10 2020 lúc 15:55

2.

\(\Leftrightarrow sinx-\left(1+cosx\right)+sin2x=-2\)

\(\Leftrightarrow sinx-cosx+1+sin2x=0\)

\(\Leftrightarrow sinx-cosx-\left(1-2sinx.cosx\right)+2=0\)

\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)^2+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=-1\\sinx-cosx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TA
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết
JE
Xem chi tiết
TL
Xem chi tiết
KO
Xem chi tiết
CL
Xem chi tiết
NH
Xem chi tiết
TL
Xem chi tiết