Phương trình chứa căn

NL

Giải phương trình:

\(\sqrt{x^2+16}-\sqrt{x^2+7}=x-2\)

TH
15 tháng 1 2021 lúc 12:02

BĐT cần chứng minh tương đương:

\(\left(\sqrt{x^2+16}-5\right)-\left(\sqrt{x^2+7}-4\right)=x-3\)

\(\Leftrightarrow\dfrac{x^2-9}{\sqrt{x^2+16}+5}-\dfrac{x^2-9}{\sqrt{x^2+7}+4}=x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\\left(x+3\right)\left(\dfrac{1}{\sqrt{x^2+16}+5}-\dfrac{1}{\sqrt{x^2+7}+4}\right)=1\left(1\right)\end{matrix}\right.\).

Mặt khác từ pt ban đầu suy ra x - 2 > 0, do đó x > 2.

Do đó vế trái của (1) bé hơn 0.

Suy ra 91) vô nghiệm.

Vậy nghiệm của pt đã cho là x = 3.

 

Bình luận (1)
TH
15 tháng 1 2021 lúc 12:09

Cách khác: Từ pt đã cho ta thấy x > 2.

PT \(\Leftrightarrow\dfrac{9}{\sqrt{x^2+16}+\sqrt{x^2+7}}=x-2\).

Với x > 3 thì VT < 1; VP > 1.

Với x < 3 thì VT > 1; VP < 1.

Với x = 3 ta thấy thoả mãn.

Vậy nghiệm của pt đã cho là x = 3.

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
H24
Xem chi tiết
GT
Xem chi tiết
BT
Xem chi tiết
NL
Xem chi tiết
LN
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết