Đk:\(0\le x\le\sqrt{17}\)
\(pt\Leftrightarrow\sqrt{17-x^2}-\left(-x+5\right)=\left(3-\sqrt{x}\right)^2-\left(-x+5\right)\)
\(\Leftrightarrow\frac{17-x^2-\left(x-5\right)^2}{\sqrt{17-x^2}-x+5}=x-6\sqrt{x}+9+x-5\)
\(\Leftrightarrow\frac{-2\left(x-1\right)\left(x-4\right)}{\sqrt{17-x^2}-x+5}-2\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\frac{-2\left(x-1\right)\left(x-4\right)}{\sqrt{17-x^2}-x+5}-\frac{2\left(x-1\right)\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(\frac{-2}{\sqrt{17-x^2}-x+5}-\frac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\right)=0\)
Rõ ràng là \(\frac{-2}{\sqrt{17-x^2}-x+5}-\frac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}< 0\) (loại)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)