BB

Giải phương trình:

\(\dfrac{x}{x^2-x-2}+\dfrac{3x}{x^2+3x-2}=1\)

NT
8 tháng 12 2023 lúc 12:52

ĐKXĐ: \(x\notin\left\{2;-1;\dfrac{-3\pm\sqrt{17}}{2}\right\}\)

\(\dfrac{x}{x^2-x-2}+\dfrac{3x}{x^2+3x-2}=1\)

=>\(\dfrac{x\left(x^2+3x-2\right)+3x\left(x^2-x-2\right)}{\left(x^2-x-2\right)\left(x^2+3x-2\right)}=1\)

=>\(\dfrac{x^3+3x^2-2x+3x^3-3x^2-6x}{\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2}=1\)

=>\(4x^3-8x=\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2\)

=>\(4x\left(x^2-2\right)=\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2\)

=>\(\left(x^2-2\right)^2-2x\left(x^2-2\right)-3x^2=0\)

=>\(\left(x^2-2\right)^2-3x\left(x^2-2\right)+x\left(x^2-2\right)-3x^2=0\)

=>\(\left(x^2-2\right)\left(x^2-2-3x\right)+x\left(x^2-2-3x\right)=0\)

=>\(\left(x^2+x-2\right)\left(x^2-3x-2\right)=0\)

=>\(\left(x+2\right)\left(x-1\right)\left(x^2-3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\\x^2-3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(nhận\right)\\x=1\left(nhận\right)\\x=\dfrac{3\pm\sqrt{17}}{2}\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
QT
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết