Bài 5: Phương trình chứa ẩn ở mẫu

DT

Giải phương trình:

\(\dfrac{3x-1}{x-1}\) - \(\dfrac{2x+5}{x+3}\) + \(\dfrac{4}{x^2+2x-3}\) = 1

H24
27 tháng 2 2021 lúc 19:45

`(3x-1)/(x-1)-(2x+5)/(x+3)+4/(x^2+2x-3)=1(x ne 1,-3)`

`<=>((3x-1)(x+3))/(x^2+2x-3)-((2x+5)(x-1))/(x^2+2x-3)+4/(x^2+2x-3)=(x^2+2x-3)/(x^2+2x-3)`

`<=>(3x-1)(x+3)-(2x+5)(x-1)+4=x^2+2x-3`

`<=>3x^2+8x-3-2x^2-3x+5+4=x^2+2x-3`

`<=>x^2+5x+6=x^2+2x-3`

`<=>3x=-9`

`<=>x=-3(loại)`

Vậy `S={cancel0}`

Bình luận (2)
NT
27 tháng 2 2021 lúc 19:45

ĐKXĐ: \(x\notin\left\{1;-3\right\}\)

Ta có: \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Leftrightarrow\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}+\dfrac{4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)+4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+8x-3-\left(2x^2+3x-5\right)+4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+8x+1-2x^2-3x+5}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

Suy ra: \(x^2+5x+6-x^2-2x+3=0\)

\(\Leftrightarrow3x+9=0\)

\(\Leftrightarrow3x=-9\)

hay x=-3(Không nhận)

Vậy: \(S=\varnothing\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
DH
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
DT
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết