H24

giải phương trình:

a) \(\sqrt{x+6}-\sqrt{x-2}=2\)

b) \(2\sqrt{x-3}-2x+3=0\)

NT
15 tháng 10 2023 lúc 20:47

a: ĐKXĐ: \(\left\{{}\begin{matrix}x+6>=0\\x-2>=0\end{matrix}\right.\Leftrightarrow x>=2\)

\(\sqrt{x+6}-\sqrt{x-2}=2\)

=>\(\left(\sqrt{x+6}-\sqrt{x-2}\right)^2=4\)

=>\(x+6+x-2-2\sqrt{\left(x+6\right)\left(x-2\right)}=4\)

=>\(2\sqrt{\left(x+6\right)\left(x-2\right)}=2x+4-4=2x\)

=>\(\sqrt{\left(x+6\right)\left(x-2\right)}=x\)

=>\(\left\{{}\begin{matrix}x>=0\\\left(x+6\right)\left(x-2\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=2\\x^2+4x-12=x^2\end{matrix}\right.\)

=>x=3

b: ĐKXĐ: \(x-3>=0\)

=>x>=3

\(2\sqrt{x-3}-2x+3=0\)

=>\(\sqrt{4x-12}=2x-3\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\4x-12=4x^2-12x+9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\4x^2-12x+9-4x+12=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\4x^2-16x+21=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
CP
Xem chi tiết
NV
Xem chi tiết
CP
Xem chi tiết
3P
Xem chi tiết
MA
Xem chi tiết
BA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết