H24

giải phương trình

a, \(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)

b, \(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}=2\)

 

QR
4 tháng 11 2016 lúc 20:51

a, Ta có: \(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)

\(\left(\sqrt[3]{2x+1}+\sqrt[3]{x}\right)^3=1^3\)

\(2x+1+x+3\sqrt[3]{\left(2x+1\right)x}\left(\sqrt[3]{2x+1}+\sqrt[3]{x}\right)=1\)

\(3x+1+3\sqrt[3]{\left(2x+1\right)x}=1\)

\(x+\sqrt[3]{\left(2x+1\right)x}=0\)

\(\sqrt[3]{\left(2x+1\right)x}=-x\)

\(\left(2x+1\right)x=-x^3\)

\(x^3+2x^2+x=0\)

\(x\left(x+1\right)^2=0\)

\(x=0\) hoặc \(x+1=0\)

\(x=0\) hoặc \(x=-1\)

b,ĐKXĐ: \(x\) khác 0, \(x\) >\(\frac{2}{3}\)

Áp dụng bất đẳng thức Cô-si cho 2 số dương \(\frac{x}{\sqrt{3x-2}}\)\(\frac{\sqrt{3x-2}}{x}\) ta được:

\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}\ge2\sqrt{\frac{x}{\sqrt{3x-2}}.\frac{\sqrt{3x-2}}{x}}\)

\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}\ge2\)

Dấu "=" xảy ra\(\Leftrightarrow\) \(x=1\) hoặc \(x=2\)

Vậy tập nghiệm của pt là S={1;2}

 

Bình luận (0)

Các câu hỏi tương tự
AD
Xem chi tiết
LT
Xem chi tiết
CL
Xem chi tiết
QL
Xem chi tiết
TK
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết