Bài 2: Phương trình bậc nhất một ẩn và cách giải

NM

giai phuong trinh: (x+1)(x+3)(x+5)(x+7)+15=0

H24
27 tháng 6 2019 lúc 14:56

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)\(Dat:x^2+8x+7=a\Rightarrow a\left(a+8\right)+15=0\Leftrightarrow a^2+8a+15=0\Leftrightarrow\left(a+3\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=-3\\a=-5\end{matrix}\right.\)\(+,a=-5\Rightarrow x^2+8x+7=-5\Leftrightarrow x^2+8x+16=4\Leftrightarrow\left(x+4\right)^2=4\Rightarrow\left[{}\begin{matrix}x+4=-2\\x+4=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\left(thoaman\right)\\x=2\left(loai\right)\end{matrix}\right.\)\(+,a=-3\Rightarrow x^2+8x+7=-3\Leftrightarrow x^2+8x+16=6\Leftrightarrow\left(x+4\right)^2=6\Leftrightarrow\left[{}\begin{matrix}x+4=-\sqrt{6}\\x+4=\sqrt{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\left(\sqrt{6}+4\right)\left(thoaman\right)\\x=\sqrt{6}-4\left(thoaman\right)\end{matrix}\right.\) \(\Rightarrow x\in\left\{\sqrt{6}-4;-\sqrt{6}-4;-6\right\}\)

Bình luận (1)

Các câu hỏi tương tự
ND
Xem chi tiết
TA
Xem chi tiết
BN
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
PT
Xem chi tiết