\(\left(x-1\right)^3+\left(2x-1\right)^3=\left(3x-2\right)^3\)
=> \(\left(x-1\right)^3+\left(2x-1\right)^3-\left(3x-2\right)^3\)
=> \(x-1+2x-1-3x+2=0\)
=> \(\left(x+2x-3x\right)-\left(1+1-2\right)=0\)
=> 0x - 0 = 0
=> x = 0
\(\left(x-1\right)^3+\left(2x-1\right)^3=\left(3x-2\right)^3\)
=> \(\left(x-1\right)^3+\left(2x-1\right)^3-\left(3x-2\right)^3\)
=> \(x-1+2x-1-3x+2=0\)
=> \(\left(x+2x-3x\right)-\left(1+1-2\right)=0\)
=> 0x - 0 = 0
=> x = 0
Bài 3: Giải các phương trình sau:
a) 2x – 5 = 0 b) 12 – 3x = 3( 4-x) c) 2(x – 3) = 2x-1
Giải phương trình: a/ (x^2+1)(x-1)=0
b/x^3+1=x(x+1)
c/ 7-(2x+4)=-(x+4)
d/ (x-1)-(2x-1)=9-x
e/ x(x+3)^2-3x=(x+2)^3+1
f/ (x-3)(x+4)-2(4x-2)=(x-4)^2
Giair phương trình sau:
a,\(2x^3+5x^2-3x=0\) b,\(2x^3+6x^2=x^2+3x\)
c,\(x^2+\left(x+2\right)\left(11x-7\right)=4\) d,\(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
e, \(x^3+1=x\left(x+1\right)\) f,\(x^3+x^2+x+1=0\)
g,\(x^3-3x^2+3x-1=0\) h,\(x^3-7x+6=0\)
i,\(x^6-x^2=0\) j,\(x^3-12=13x\)
k,\(-x^5+4x^4=-12x^3\) l, \(x^3=4x\)
Giải phương trình
1) 5(x - 3) - 4 = 2(x - 1)
2) 5(x - 3) - 2(x - 5) = x-2
3) 3(x - 2) - 14x = 2(3-) + 1
4) (x + 1)²+ 2x = x(x + 1) + 6
5) 3 - 4x(3 - 2x) = 8x² + x - 30
6) x²-x(5 - x) = 8
7) (x - 1)² - 36 = 0
8) (3x - 1)(4x - 3) + 2x(6x - 1) = 2(2x + 7)
9) (x - 2)² + 4(x - 3) =(x² + x - 3)
10) (x - 2)² – 2(x + 1) = (x - 1)(x - 2)
11) (x - 2)² + 3(x - 5) = x² + 3x - 3
12)(x - 3)² + (x + 3)² = 2 (x² +9)
13) (3x - 1)2 + (3x +1)² = 2(9x² + 4) + 1
14) (x - 1)(x - 2) + (2x + 1) = 5x²
giải phương trình sau:
x^3+3x^2+3x-1=0
giải nhanh hộ m vs mn
Giai phường trình sau:
a, \(3x^2+2x-1=0\) e, \(4x^2-12x+5=0\) i,\(2x^2+5x-3=0\)
b,\(x^2-5x+6=0\) f, \(2x^2+5x+3=0\) j,\(x^2+6x-16=0\)
c,\(x^2-3x+2=0\) g,\(x^2+x-2=0\)
d,\(2x^2-6x+1=0\) h, \(x^2-4x+3=0\)
Câu2:giải các phương trình sau:
a)5(3x+2) =4x+1
b)\(\frac{4x-5}{x-1}=2+\frac{X}{X-1}\) c)\(2x^3+4x^2+2x=0\)
1) Giải bài toán bằng cách lập ptrình: ( Nếu các đại lượng có sự biến đổi thì lập bảng 12 ô )
Một miếng đất hcn có chiều dài hơn chiều rộng 6m. Tính kích thước của miếng đất, biết chu vi của nó là 60m.
2) Giải các pt chứa ẩn ở mẫu ( Hãy tìm điều kiện cho ẩn để mẫu thức khác 0)
a) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
b) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
c) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x+3\right)\left(x-3\right)}\)
e) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
f) \(\frac{x}{3x-2}-\frac{4}{4x-3}=\frac{x^2}{\left(3x-2\right)\left(4x-3\right)}\)
g) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
h) \(\frac{2x-1}{x-3}-\frac{1}{x}=\frac{3}{x^2-3x}\)
i) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\)