\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Leftrightarrow\frac{b}{a}+\frac{c}{a}=\frac{a}{b}+\frac{c}{b}=\frac{a}{c}+\frac{b}{c}\)
Do đó \(P=\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{b}{c}\right)=3\left(\frac{b}{a}+\frac{c}{a}\right)=\frac{3\left(b+c\right)}{a}\)