Bài 1: Căn bậc hai

NM

Giải phương trình vô tỉ: \(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)

DH
15 tháng 2 2020 lúc 11:41

Ta viết lại pt thành: \(\left(2x-3\right)^2+x-3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)

Đặt: \(\left\{{}\begin{matrix}a=2x-3\\b=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\end{matrix}\right.\) ta thu được hệ pt:

\(\left\{{}\begin{matrix}a^2+x-3=\left(x-1\right)b\\b^2+x-3=\left(x-1\right)a\end{matrix}\right.\) Trừ 2pt của hệ ta có:

\(\Leftrightarrow a^2-b^2=\left(x-1\right)\left(b-a\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+x-1\right)=0\)

Ta có trường hợp 1:

\(a=b\Leftrightarrow2x-3=\sqrt{2x^2-6x+6}\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\2x^2-6x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3-\sqrt{3}}{2}\left(ktm\right)\\x=\frac{3+\sqrt{3}}{2}\left(tmđk\right)\end{matrix}\right.\)

Tương tự ta có trường hợp 2:

\(2x-3+\sqrt{2x^2-6x+6}+x-3=0\Leftrightarrow\sqrt{2x^2-6x}=6-3x\Leftrightarrow\left\{{}\begin{matrix}x\le2\\7x^2-30x+36=0\end{matrix}\right.\left(vn\right)\)

Vậy pt có \(n_0\) \(S=\left\{x=\frac{3+\sqrt{3}}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
QH
Xem chi tiết
NL
Xem chi tiết
AD
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
DL
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết