LJ

Giải phương trình: \(\sqrt[3]{x+6}+\sqrt{x-1}=x^2-1\).

NL
10 tháng 3 2022 lúc 0:17

ĐKXĐ: \(x\ge1\)

\(\sqrt[3]{x+6}-2+\sqrt[]{x-1}-1=x^2-4\)

\(\Leftrightarrow\dfrac{x-2}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{x-2}{\sqrt[]{x-1}+1}=\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{1}{\sqrt[]{x-1}+1}=x+2\left(1\right)\end{matrix}\right.\)

Xét (1); do \(x\ge1\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[2]{x+6}+4}+\dfrac{1}{\sqrt[]{x-1}+1}< \dfrac{1}{4}+1< 2\\x+2>1+2>2\end{matrix}\right.\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Vậy \(x=2\) là nghiệm duy nhất của pt

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
Xem chi tiết
PK
Xem chi tiết
LJ
Xem chi tiết
MC
Xem chi tiết
MC
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết