Bài 8: Rút gọn biểu thức chứa căn bậc hai

QN

Giải phương trình sau:\(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)

HV
18 tháng 10 2018 lúc 20:18

\(\dfrac{2\sqrt{2}}{\sqrt{x}+1}+\sqrt{x}=\sqrt{x+9}\)

\(\Leftrightarrow\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}-\sqrt{x+9}=0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}+\sqrt{\left(x+1\right)\cdot x}-\sqrt{\left(x+1\right)\cdot\left(x+9\right)}}{\sqrt{x+1}}=0\)\(Suyra:2\sqrt{2}+\sqrt{x^2+x}-\sqrt{x^2+10x+9=0}\)(DKXD:\(x\ne-1;x\ne-9\))

\(\Leftrightarrow\sqrt{x^2+x}=-2\sqrt{2}+\sqrt{x^2+10x+9}\)

\(\Leftrightarrow x^2+x=x^2+10x+9-4\sqrt{\left(x^2+10x+9\right)\cdot2}+8\)\(\Leftrightarrow x=10x+9-4\sqrt{2x^2+20x+18}+8\)

\(\Leftrightarrow x=10x+17-4\sqrt{2x^2+20x+18}\)

\(\Leftrightarrow4\sqrt{2x^2+20x+18}=9x+17\)

\(\Leftrightarrow\left(4\sqrt{2x^2+20x+18}\right)^2=\left(9x+17\right)^2\)

\(\Leftrightarrow16\left(2x^2+20+18\right)=81x^2+306x+289\)\(\Leftrightarrow32x^2+320x+288-81x^2-306x-289=0\)\(\Leftrightarrow-49x^2+14x-1=0\)

\(\Leftrightarrow-49x^2+7x+7x-1=0\)

\(\Leftrightarrow-7x\cdot\left(7x-1\right)+\left(7x-1\right)=0\)

\(\Leftrightarrow-\left(7x-1\right)\cdot\left(7x-1\right)=0\)

\(\Leftrightarrow-\left(7x-1\right)^2=0\)

\(\Leftrightarrow7x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{7}\left(TM\right)\)

Bình luận (0)
NT
10 tháng 11 2018 lúc 12:41

\(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\) (*)\(\)

ĐKXĐ là : x \(\ge0\)

(*) \(\Leftrightarrow\) \(\left(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}\right)^2=\left(\sqrt{x+9}\right)^2\)

\(\Leftrightarrow\dfrac{8}{x+1}+\dfrac{4\sqrt{2x}}{\sqrt{x+1}}+x=x+9\)

\(\Leftrightarrow\dfrac{8}{x+1}+\dfrac{4\sqrt{2x\left(x+1\right)}}{x+1}+\dfrac{x\left(x+1\right)}{x+1}=\dfrac{\left(x+1\right)\left(x+9\right)}{x+1}\)

\(\Leftrightarrow\) 8 + 4\(\sqrt{2x^2+2x}\) + x2 + x = x2 + 9x + x + 9

\(\Leftrightarrow\) x2 - x2 + 4\(\sqrt{2x^2+2x}\)= x - x + 9x + 9 - 8

\(\Leftrightarrow4\sqrt{2x^2+2x}\) = 9x + 1

\(\Leftrightarrow\left(4\sqrt{2x^2+2x}\right)^2=\left(9x+1\right)^2\)

\(\Leftrightarrow\) 16 (2x2 + 2x) = 81x2 +18x + 1

\(\Leftrightarrow32x^2+32x-81x^2-18x-1=0\)

\(\Leftrightarrow-49x^2+14x-1=0\)

\(\Leftrightarrow-\left(49x^2-14x+1\right)=0\)

\(\Leftrightarrow-\left(7x-1\right)^2=0\)

\(\Leftrightarrow7x-1=0\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\left(TMĐK\right)\)

Vậy S = \(\left\{\dfrac{1}{7}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
H24
Xem chi tiết
SM
Xem chi tiết
SM
Xem chi tiết
TN
Xem chi tiết
HV
Xem chi tiết
NH
Xem chi tiết
HV
Xem chi tiết
H24
Xem chi tiết