Bài 2: Phương trình lượng giác cơ bản

NS

Giải phương trình sau:

\(2sin\left(2x-\dfrac{\pi}{4}\right)+\sqrt{3}=0\)

LH
30 tháng 6 2021 lúc 21:29

Pt \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\),\(k\in Z\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...
Hôm qua họ bảo toi ra lấy CCCD nma toi chưa đi, nay toi đi họ lại đang họp, liệu mai toi đi có bị ăn chửi ko, mn cho ý kiến đi :<

Bình luận (1)
HP
30 tháng 6 2021 lúc 21:29

\(2sin\left(2x-\dfrac{\pi}{4}\right)+\sqrt{3}=0\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=sin\left(-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{12}+k2\pi\\2x=\dfrac{19\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
MA
Xem chi tiết
LY
Xem chi tiết
JP
Xem chi tiết
SK
Xem chi tiết
JE
Xem chi tiết
SK
Xem chi tiết
MA
Xem chi tiết
NS
Xem chi tiết