Bài 3: Phương trình đưa được về dạng ax + b = 0

EC

giải phương trình:

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

QD
10 tháng 1 2018 lúc 19:52

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

\(\Leftrightarrow\left(12x+7\right)^2\cdot4\left(3x+2\right)\cdot6\left(2x+1\right)=3\cdot4\cdot6\)

\(\Leftrightarrow\left(12x+7\right)^2\left(12x+8\right)\left(12x+6\right)=72\) (1)

Đặt 12x + 7 = a

(1) \(\Leftrightarrow a^2\left(a+1\right)\left(a-1\right)=72\)

\(\Leftrightarrow a^2\left(a^2-1\right)=72\) (2)

Đặt \(a^2=b\)

(2) \(\Leftrightarrow b\left(b-1\right)=72\)

\(\Leftrightarrow b^2-b-72=0\)

\(\Leftrightarrow b^2+8b-9b-72=0\)

\(\Leftrightarrow b\left(b+8\right)-9\left(b+8\right)=0\)

\(\Leftrightarrow\left(b-9\right)\left(b+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b-9=0\\b+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=9\\b=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2=9\Leftrightarrow a=\pm3\\a^2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}12x+7=3\\12x+7=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}12x=-4\\12x=-10\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-\dfrac{5}{6}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
T8
Xem chi tiết
NT
Xem chi tiết
SN
Xem chi tiết
SK
Xem chi tiết